

G.V.P. COLLEGE FOR DEGREE AND P.G. COURSES (A) Re-accredited by NAAC DEPARTMENT OF ELECTRONICS

SYLLABUS OF B.Sc. (Honours) For Minor IOT w.e.f. 2023-24 SEMESTER-II

COURSE1: DIGITAL ELECTRONICS

SEM	COURSE TITLE	HOURS	CREDITS
2	DIGITAL ELECTRONICS	3+2	4

OBJECTIVES

- Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs).
- Design simple digital systems based on these digital abstractions, using the "digital paradigm" including discrete sampled information.
- Use the "tools of the trade": basic instruments, devices and design tools.
- Work in a design team that can propose, design, successfully implement and report on digital systems project.
- Communicate the purpose and results of a design project in written and oral presentations.

UNIT-I NUMBER SYSTEM AND CODES:

Decimal, Binary, Hexadecimal, Octal BCD, Conversions, Complements (1's,2's, 9's and 10's), Addition, Subtraction, Grey, Excess-3, inter Code conversion between number system.

UNIT-II BOOLEAN ALGEBRA AND THEOREMS:

Boolean Theorems, De Morgan's laws. Digital logic gates, Multilevel NAND & NORgates. Standard representation of logic functions (SOP and POS), Minimization Techniques (Karnaugh Map Method: 4 variables), don't care condition.

Unit-III IC LOGIC FAMILIES:

Digital Logic Families: Characteristics of logic families – fan in, fan out, power dissipation, propagation delay, noise margin., DTL, ECL, RTL, TTL and CMOS logic circuits- Inverter, NAND, NOR. Bi- CMOS Inverter and its characteristics.

UNIT-IV COMBINATIONAL DIGITAL CIRCUITS:

Adders: Half & full adder, Subtractor – Half and Full Subtractor, Parallel binary adder, Magnitude Comparator, Multiplexers (2:1, 4:1)) and De-multiplexers (1:2, 4:1), Encoder (8- line-to-3-line) and Decoder (3-line-to-8-line).

UNIT-V SEQUENTIAL DIGITAL CIRCUITS:

Flip -Flops: S-R FF,J-K FF,T and D type FFs, Master –Slave FFs, Excitation tables, Registers: shift left register, shift rightregister, Counters-Asynchronous-Mod16, Mod-10, Mod-8, Downcounter, Synchronous-4-bit&Ring counter.

COURSE OUTCOMES

Student will be able to

- Describe how analog signals are used to represent digital values in different logic families, including characterization of the noise margins.
- Create the appropriate truth table from a description of a combinational logic function.
- Create a gate-level implementation of a combinational logic function described by a truth table using and/or/inverter gates, MUX'S or ROMs, and analyse its timing behaviour.
- Create a state transition diagram from a description of a sequential logic function and then convert the diagram into an implementation of a finite-state machine with appropriate combinational and sequential components.
- Describe the operation and timing constraints for latches and registers.
- Draw a circuit diagram for a sequential logic circuit and analyse its timing properties (input setup and hold times, minimum clock period, output propagationdelays).
- Evaluate combinational and sequential logic designs using various metrics: switching speed, throughput/latency, gate count and area, energy dissipation and power
- Properly incorporate synchronous and asynchronous memories into a circuitdesign.

TEXTBOOKS:

- 1.M.MorrisMano, -Digital Design- 3rdEdition, PHI, New Delhi.
- 2.RonaldJ.Tocci.—Digital Systems-Principles and Applications 6/e.PHI.New Delhi. 1999.(UNITSI to IV)
- 3.G.K.Kharate-Digital electronics-oxford university press
- 4.S.Salivahana & S.Arivazhagan- Digital circuits and design
- 5. Fundamentals of Digital Circuits by Anand Kumar

REFERENCEBOOKS:

- 1.Herbert Tau band Donald Schilling. -Digital Integrated Electronics McGraw-Hill. 1985.
- 2.S.K.Bose.—DigitalSystems||.2/e. New Age International.1992.
- 3.D.K. Anvek arand B.S. Sonade. "Electronic Data Converters: Fundamentals& Applications". TMH.1994.
- 4. Malvino and Leach. "Digital Principles and Applications". T MG Hill Edition.

LAB COURSE1: DIGITAL ELECTRONICS

LIST OF EXPERIMENTS:

The laboratory work can be done by using physical gates and necessary equipment or simulators.

- 1. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet, concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.
- 2. Implementation of the given Boolean functions using logic gates in both SOP and POS forms
- 3. Realization of basic gates using universal gates.
- 4. Implementation of half and full adder circuits using logic Gates.
- 5. Implementation of half and full subtractor circuits using logic gates.
- 6. Verification of stable tables of RS, JK, T and D flip-flops using NAND gates.
- 7. Verification of stable tables of RS, JK, T and D flip-flops using NOR gates.
- 8. Implementation and verification of Decoder and encoder using logic gates.
- 9. Implementation of 4X1 MUX and DeMUX using logic gates.
- 10. Implementation of 8X1 MUX using suitable lower order MUX.
- 11. Implementation of 7-segment decoder circuit.
- 12. Implementation of 4-bit parallel adder.
- 13. Design and verification of 4-bit synchronous counter.
- 14. Design and verification of 4-bit asynchronous counter.